ASIC Майнер – АСИК Фермы – BitcoinWiki

Why i’m bullish on Zilliqa (long read)

Edit: TL;DR added in the comments
 
Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analyzed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk-reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralized and scalable in my opinion.
 
Below I post my analysis of why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise, just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction
 
The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since the end of January 2019 with daily transaction rates growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralized and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. The maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realized early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralized, secure, and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in the amount of nodes. More nodes = higher transaction throughput and increased decentralization. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue dissecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour, no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts, etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as: “A peer-to-peer, append-only datastore that uses consensus to synchronize cryptographically-secure data”.
 
Next, he states that: "blockchains are fundamentally systems for managing valid state transitions”. For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber, and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa, this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network, etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever-changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralized and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimization on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and the University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (66%) double-spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT, etc. Another thing we haven’t looked at yet is the amount of decentralization.
 
Decentralisation
 
Currently, there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so-called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralized nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics, you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching its transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end-users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public. They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public-facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers. The 5% block rewards with an annual yield of 10.03% translate to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non-custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS; shard nodes and seed nodes becoming more decentralized too, Zilliqa qualifies for the label of decentralized in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. The faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time-stamped so you’ll start right away with a platform introduction, roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalized: programming languages can be divided into being ‘object-oriented’ or ‘functional’. Here is an ELI5 given by software development academy: * “all programs have two basic components, data – what the program knows – and behavior – what the program can do with that data. So object-oriented programming states that combining data and related behaviors in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behavior are different things and should be separated to ensure their clarity.” *
 
Scilla is on the functional side and shares similarities with OCaml: OCaml is a general-purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognized by academics and won a so-called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise, it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts, it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa or Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue: In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships
 
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organizations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggests that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already take advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, Airbnb, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are built on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human-readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They don't just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data, it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community-run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non-custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiative (correct me if I’m wrong though). This suggests in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real-time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding of what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures, Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

RiB Newsletter #16 – Secure Enclaves à la Crab

For the last few months we’ve been following new zero-knowledge proof projects in Rust. This month, with Secret Network upgrading their mainnet with secret contracts, it seems like a good opportunity to explore Rust blockchains that are using a completely different privacy-preserving technology: secure enclaves.
Secure enclaves are processes whose environment is protected from inspection by other processes, even the kernel, by special hardware. This protection particularly involves the encryption of a process’s memory. Software that wants to compute in secret can put those computations inside a secure enclave and, if everything works as expected, neither a local user, nor the hosting provider, can snoop on the computations being performed. The most notable implementation of secure enclaves is Intel’s SGX (Secure Guard Extensions).
Secure enclaves are an attractive way to perform private computation primarily because they don’t impose any limitations on what can be computed — code that runs inside SGX is more-or-less just regular x86 code, just running inside a special environment. But depending on SGX for privacy does have some special risks: software that runs in an SGX enclave must be signed (if transitively) by Intel’s own cryptographic keys, which means that Intel must approve of any software running in SGX, that Intel can revoke permission to use SGX, and that there is a risk of the signing keys being compromised; and it’s not obvious that secure enclaves are actually secure, there have already been a number of attacks against SGX. Regardless, as of now, hardware enclaves provide security features that aren’t feasible any other way.
There are two prominent Rust blockchains relying on SGX:
Outside of the blockchain world there are some other Rust projects using SGX, the most notable being:
Whether it’s secure enclaves or zk-SNARKs, Rust blockchains are walking the bleeding edge of privacy tech.
In unrelated RiB news, we recently received two donations,
Thanks so much to our anonymous donors. We don’t often receive donations, so this was a nice surprise! We intend to put all monetary contributions to use funding events or new contributors, and we’ll let you know what we do with the funds when we spend them.

Project Spotlight

Each month we like to shine a light on a notable Rust blockchain project. This month that project is…
Aleo.
Aleo is a zero-knowledge blockchain, with its own zero-knowledge programming language, Leo.
We don’t have a lot to say about it, but we think it looks cool. We hope they blog more.

Interesting Things

News

Blog Posts

Papers

Projects


Read more: https://rustinblockchain.org/newsletters/2020-09-30-secure-enclaves-a-la-crab/
submitted by Aimeedeer to rust [link] [comments]

Why i’m bullish on Zilliqa (long read)

Hey all, I've been researching coins since 2017 and have gone through 100s of them in the last 3 years. I got introduced to blockchain via Bitcoin of course, analysed Ethereum thereafter and from that moment I have a keen interest in smart contact platforms. I’m passionate about Ethereum but I find Zilliqa to have a better risk reward ratio. Especially because Zilliqa has found an elegant balance between being secure, decentralised and scalable in my opinion.
 
Below I post my analysis why from all the coins I went through I’m most bullish on Zilliqa (yes I went through Tezos, EOS, NEO, VeChain, Harmony, Algorand, Cardano etc.). Note that this is not investment advice and although it's a thorough analysis there is obviously some bias involved. Looking forward to what you all think!
 
Fun fact: the name Zilliqa is a play on ‘silica’ silicon dioxide which means “Silicon for the high-throughput consensus computer.”
 
This post is divided into (i) Technology, (ii) Business & Partnerships, and (iii) Marketing & Community. I’ve tried to make the technology part readable for a broad audience. If you’ve ever tried understanding the inner workings of Bitcoin and Ethereum you should be able to grasp most parts. Otherwise just skim through and once you are zoning out head to the next part.
 
Technology and some more:
 
Introduction The technology is one of the main reasons why I’m so bullish on Zilliqa. First thing you see on their website is: “Zilliqa is a high-performance, high-security blockchain platform for enterprises and next-generation applications.” These are some bold statements.
 
Before we deep dive into the technology let’s take a step back in time first as they have quite the history. The initial research paper from which Zilliqa originated dates back to August 2016: Elastico: A Secure Sharding Protocol For Open Blockchains where Loi Luu (Kyber Network) is one of the co-authors. Other ideas that led to the development of what Zilliqa has become today are: Bitcoin-NG, collective signing CoSi, ByzCoin and Omniledger.
 
The technical white paper was made public in August 2017 and since then they have achieved everything stated in the white paper and also created their own open source intermediate level smart contract language called Scilla (functional programming language similar to OCaml) too.
 
Mainnet is live since end of January 2019 with daily transaction rate growing continuously. About a week ago mainnet reached 5 million transactions, 500.000+ addresses in total along with 2400 nodes keeping the network decentralised and secure. Circulating supply is nearing 11 billion and currently only mining rewards are left. Maximum supply is 21 billion with annual inflation being 7.13% currently and will only decrease with time.
 
Zilliqa realised early on that the usage of public cryptocurrencies and smart contracts were increasing but decentralised, secure and scalable alternatives were lacking in the crypto space. They proposed to apply sharding onto a public smart contract blockchain where the transaction rate increases almost linear with the increase in amount of nodes. More nodes = higher transaction throughput and increased decentralisation. Sharding comes in many forms and Zilliqa uses network-, transaction- and computational sharding. Network sharding opens up the possibility of using transaction- and computational sharding on top. Zilliqa does not use state sharding for now. We’ll come back to this later.
 
Before we continue disecting how Zilliqa achieves such from a technological standpoint it’s good to keep in mind that a blockchain being decentralised and secure and scalable is still one of the main hurdles in allowing widespread usage of decentralised networks. In my opinion this needs to be solved first before blockchains can get to the point where they can create and add large scale value. So I invite you to read the next section to grasp the underlying fundamentals. Because after all these premises need to be true otherwise there isn’t a fundamental case to be bullish on Zilliqa, right?
 
Down the rabbit hole
 
How have they achieved this? Let’s define the basics first: key players on Zilliqa are the users and the miners. A user is anybody who uses the blockchain to transfer funds or run smart contracts. Miners are the (shard) nodes in the network who run the consensus protocol and get rewarded for their service in Zillings (ZIL). The mining network is divided into several smaller networks called shards, which is also referred to as ‘network sharding’. Miners subsequently are randomly assigned to a shard by another set of miners called DS (Directory Service) nodes. The regular shards process transactions and the outputs of these shards are eventually combined by the DS shard as they reach consensus on the final state. More on how these DS shards reach consensus (via pBFT) will be explained later on.
 
The Zilliqa network produces two types of blocks: DS blocks and Tx blocks. One DS Block consists of 100 Tx Blocks. And as previously mentioned there are two types of nodes concerned with reaching consensus: shard nodes and DS nodes. Becoming a shard node or DS node is being defined by the result of a PoW cycle (Ethash) at the beginning of the DS Block. All candidate mining nodes compete with each other and run the PoW (Proof-of-Work) cycle for 60 seconds and the submissions achieving the highest difficulty will be allowed on the network. And to put it in perspective: the average difficulty for one DS node is ~ 2 Th/s equaling 2.000.000 Mh/s or 55 thousand+ GeForce GTX 1070 / 8 GB GPUs at 35.4 Mh/s. Each DS Block 10 new DS nodes are allowed. And a shard node needs to provide around 8.53 GH/s currently (around 240 GTX 1070s). Dual mining ETH/ETC and ZIL is possible and can be done via mining software such as Phoenix and Claymore. There are pools and if you have large amounts of hashing power (Ethash) available you could mine solo.
 
The PoW cycle of 60 seconds is a peak performance and acts as an entry ticket to the network. The entry ticket is called a sybil resistance mechanism and makes it incredibly hard for adversaries to spawn lots of identities and manipulate the network with these identities. And after every 100 Tx Blocks which corresponds to roughly 1,5 hour this PoW process repeats. In between these 1,5 hour no PoW needs to be done meaning Zilliqa’s energy consumption to keep the network secure is low. For more detailed information on how mining works click here.
Okay, hats off to you. You have made it this far. Before we go any deeper down the rabbit hole we first must understand why Zilliqa goes through all of the above technicalities and understand a bit more what a blockchain on a more fundamental level is. Because the core of Zilliqa’s consensus protocol relies on the usage of pBFT (practical Byzantine Fault Tolerance) we need to know more about state machines and their function. Navigate to Viewblock, a Zilliqa block explorer, and just come back to this article. We will use this site to navigate through a few concepts.
 
We have established that Zilliqa is a public and distributed blockchain. Meaning that everyone with an internet connection can send ZILs, trigger smart contracts etc. and there is no central authority who fully controls the network. Zilliqa and other public and distributed blockchains (like Bitcoin and Ethereum) can also be defined as state machines.
 
Taking the liberty of paraphrasing examples and definitions given by Samuel Brooks’ medium article, he describes the definition of a blockchain (like Zilliqa) as:
“A peer-to-peer, append-only datastore that uses consensus to synchronise cryptographically-secure data”.
 
Next he states that: >“blockchains are fundamentally systems for managing valid state transitions”.* For some more context, I recommend reading the whole medium article to get a better grasp of the definitions and understanding of state machines. Nevertheless, let’s try to simplify and compile it into a single paragraph. Take traffic lights as an example: all its states (red, amber and green) are predefined, all possible outcomes are known and it doesn’t matter if you encounter the traffic light today or tomorrow. It will still behave the same. Managing the states of a traffic light can be done by triggering a sensor on the road or pushing a button resulting in one traffic lights’ state going from green to red (via amber) and another light from red to green.
 
With public blockchains like Zilliqa this isn’t so straightforward and simple. It started with block #1 almost 1,5 years ago and every 45 seconds or so a new block linked to the previous block is being added. Resulting in a chain of blocks with transactions in it that everyone can verify from block #1 to the current #647.000+ block. The state is ever changing and the states it can find itself in are infinite. And while the traffic light might work together in tandem with various other traffic lights, it’s rather insignificant comparing it to a public blockchain. Because Zilliqa consists of 2400 nodes who need to work together to achieve consensus on what the latest valid state is while some of these nodes may have latency or broadcast issues, drop offline or are deliberately trying to attack the network etc.
 
Now go back to the Viewblock page take a look at the amount of transaction, addresses, block and DS height and then hit refresh. Obviously as expected you see new incremented values on one or all parameters. And how did the Zilliqa blockchain manage to transition from a previous valid state to the latest valid state? By using pBFT to reach consensus on the latest valid state.
 
After having obtained the entry ticket, miners execute pBFT to reach consensus on the ever changing state of the blockchain. pBFT requires a series of network communication between nodes, and as such there is no GPU involved (but CPU). Resulting in the total energy consumed to keep the blockchain secure, decentralised and scalable being low.
 
pBFT stands for practical Byzantine Fault Tolerance and is an optimisation on the Byzantine Fault Tolerant algorithm. To quote Blockonomi: “In the context of distributed systems, Byzantine Fault Tolerance is the ability of a distributed computer network to function as desired and correctly reach a sufficient consensus despite malicious components (nodes) of the system failing or propagating incorrect information to other peers.” Zilliqa is such a distributed computer network and depends on the honesty of the nodes (shard and DS) to reach consensus and to continuously update the state with the latest block. If pBFT is a new term for you I can highly recommend the Blockonomi article.
 
The idea of pBFT was introduced in 1999 - one of the authors even won a Turing award for it - and it is well researched and applied in various blockchains and distributed systems nowadays. If you want more advanced information than the Blockonomi link provides click here. And if you’re in between Blockonomi and University of Singapore read the Zilliqa Design Story Part 2 dating from October 2017.
Quoting from the Zilliqa tech whitepaper: “pBFT relies upon a correct leader (which is randomly selected) to begin each phase and proceed when the sufficient majority exists. In case the leader is byzantine it can stall the entire consensus protocol. To address this challenge, pBFT offers a view change protocol to replace the byzantine leader with another one.”
 
pBFT can tolerate ⅓ of the nodes being dishonest (offline counts as Byzantine = dishonest) and the consensus protocol will function without stalling or hiccups. Once there are more than ⅓ of dishonest nodes but no more than ⅔ the network will be stalled and a view change will be triggered to elect a new DS leader. Only when more than ⅔ of the nodes are dishonest (>66%) double spend attacks become possible.
 
If the network stalls no transactions can be processed and one has to wait until a new honest leader has been elected. When the mainnet was just launched and in its early phases, view changes happened regularly. As of today the last stalling of the network - and view change being triggered - was at the end of October 2019.
 
Another benefit of using pBFT for consensus besides low energy is the immediate finality it provides. Once your transaction is included in a block and the block is added to the chain it’s done. Lastly, take a look at this article where three types of finality are being defined: probabilistic, absolute and economic finality. Zilliqa falls under the absolute finality (just like Tendermint for example). Although lengthy already we skipped through some of the inner workings from Zilliqa’s consensus: read the Zilliqa Design Story Part 3 and you will be close to having a complete picture on it. Enough about PoW, sybil resistance mechanism, pBFT etc. Another thing we haven’t looked at yet is the amount of decentralisation.
 
Decentralisation
 
Currently there are four shards, each one of them consisting of 600 nodes. 1 shard with 600 so called DS nodes (Directory Service - they need to achieve a higher difficulty than shard nodes) and 1800 shard nodes of which 250 are shard guards (centralised nodes controlled by the team). The amount of shard guards has been steadily declining from 1200 in January 2019 to 250 as of May 2020. On the Viewblock statistics you can see that many of the nodes are being located in the US but those are only the (CPU parts of the) shard nodes who perform pBFT. There is no data from where the PoW sources are coming. And when the Zilliqa blockchain starts reaching their transaction capacity limit, a network upgrade needs to be executed to lift the current cap of maximum 2400 nodes to allow more nodes and formation of more shards which will allow to network to keep on scaling according to demand.
Besides shard nodes there are also seed nodes. The main role of seed nodes is to serve as direct access points (for end users and clients) to the core Zilliqa network that validates transactions. Seed nodes consolidate transaction requests and forward these to the lookup nodes (another type of nodes) for distribution to the shards in the network. Seed nodes also maintain the entire transaction history and the global state of the blockchain which is needed to provide services such as block explorers. Seed nodes in the Zilliqa network are comparable to Infura on Ethereum.
 
The seed nodes were first only operated by Zilliqa themselves, exchanges and Viewblock. Operators of seed nodes like exchanges had no incentive to open them for the greater public.They were centralised at first. Decentralisation at the seed nodes level has been steadily rolled out since March 2020 ( Zilliqa Improvement Proposal 3 ). Currently the amount of seed nodes is being increased, they are public facing and at the same time PoS is applied to incentivize seed node operators and make it possible for ZIL holders to stake and earn passive yields. Important distinction: seed nodes are not involved with consensus! That is still PoW as entry ticket and pBFT for the actual consensus.
 
5% of the block rewards are being assigned to seed nodes (from the beginning in 2019) and those are being used to pay out ZIL stakers.The 5% block rewards with an annual yield of 10.03% translates to roughly 610 MM ZILs in total that can be staked. Exchanges use the custodial variant of staking and wallets like Moonlet will use the non custodial version (starting in Q3 2020). Staking is being done by sending ZILs to a smart contract created by Zilliqa and audited by Quantstamp.
 
With a high amount of DS & shard nodes and seed nodes becoming more decentralised too, Zilliqa qualifies for the label of decentralised in my opinion.
 
Smart contracts
 
Let me start by saying I’m not a developer and my programming skills are quite limited. So I‘m taking the ELI5 route (maybe 12) but if you are familiar with Javascript, Solidity or specifically OCaml please head straight to Scilla - read the docs to get a good initial grasp of how Zilliqa’s smart contract language Scilla works and if you ask yourself “why another programming language?” check this article. And if you want to play around with some sample contracts in an IDE click here. Faucet can be found here. And more information on architecture, dapp development and API can be found on the Developer Portal.
If you are more into listening and watching: check this recent webinar explaining Zilliqa and Scilla. Link is time stamped so you’ll start right away with a platform introduction, R&D roadmap 2020 and afterwards a proper Scilla introduction.
 
Generalised: programming languages can be divided into being ‘object oriented’ or ‘functional’. Here is an ELI5 given by software development academy: > “all programmes have two basic components, data – what the programme knows – and behaviour – what the programme can do with that data. So object-oriented programming states that combining data and related behaviours in one place, is called “object”, which makes it easier to understand how a particular program works. On the other hand, functional programming argues that data and behaviour are different things and should be separated to ensure their clarity.”
 
Scilla is on the functional side and shares similarities with OCaml: > OCaml is a general purpose programming language with an emphasis on expressiveness and safety. It has an advanced type system that helps catch your mistakes without getting in your way. It's used in environments where a single mistake can cost millions and speed matters, is supported by an active community, and has a rich set of libraries and development tools. For all its power, OCaml is also pretty simple, which is one reason it's often used as a teaching language.
 
Scilla is blockchain agnostic, can be implemented onto other blockchains as well, is recognised by academics and won a so called Distinguished Artifact Award award at the end of last year.
 
One of the reasons why the Zilliqa team decided to create their own programming language focused on preventing smart contract vulnerabilities safety is that adding logic on a blockchain, programming, means that you cannot afford to make mistakes. Otherwise it could cost you. It’s all great and fun blockchains being immutable but updating your code because you found a bug isn’t the same as with a regular web application for example. And with smart contracts it inherently involves cryptocurrencies in some form thus value.
 
Another difference with programming languages on a blockchain is gas. Every transaction you do on a smart contract platform like Zilliqa for Ethereum costs gas. With gas you basically pay for computational costs. Sending a ZIL from address A to address B costs 0.001 ZIL currently. Smart contracts are more complex, often involve various functions and require more gas (if gas is a new concept click here ).
 
So with Scilla, similar to Solidity, you need to make sure that “every function in your smart contract will run as expected without hitting gas limits. An improper resource analysis may lead to situations where funds may get stuck simply because a part of the smart contract code cannot be executed due to gas limits. Such constraints are not present in traditional software systems”. Scilla design story part 1
 
Some examples of smart contract issues you’d want to avoid are: leaking funds, ‘unexpected changes to critical state variables’ (example: someone other than you setting his or her address as the owner of the smart contract after creation) or simply killing a contract.
 
Scilla also allows for formal verification. Wikipedia to the rescue:
In the context of hardware and software systems, formal verification is the act of proving or disproving the correctness of intended algorithms underlying a system with respect to a certain formal specification or property, using formal methods of mathematics.
 
Formal verification can be helpful in proving the correctness of systems such as: cryptographic protocols, combinational circuits, digital circuits with internal memory, and software expressed as source code.
 
Scilla is being developed hand-in-hand with formalization of its semantics and its embedding into the Coq proof assistant — a state-of-the art tool for mechanized proofs about properties of programs.”
 
Simply put, with Scilla and accompanying tooling developers can be mathematically sure and proof that the smart contract they’ve written does what he or she intends it to do.
 
Smart contract on a sharded environment and state sharding
 
There is one more topic I’d like to touch on: smart contract execution in a sharded environment (and what is the effect of state sharding). This is a complex topic. I’m not able to explain it any easier than what is posted here. But I will try to compress the post into something easy to digest.
 
Earlier on we have established that Zilliqa can process transactions in parallel due to network sharding. This is where the linear scalability comes from. We can define simple transactions: a transaction from address A to B (Category 1), a transaction where a user interacts with one smart contract (Category 2) and the most complex ones where triggering a transaction results in multiple smart contracts being involved (Category 3). The shards are able to process transactions on their own without interference of the other shards. With Category 1 transactions that is doable, with Category 2 transactions sometimes if that address is in the same shard as the smart contract but with Category 3 you definitely need communication between the shards. Solving that requires to make a set of communication rules the protocol needs to follow in order to process all transactions in a generalised fashion.
 
And this is where the downsides of state sharding comes in currently. All shards in Zilliqa have access to the complete state. Yes the state size (0.1 GB at the moment) grows and all of the nodes need to store it but it also means that they don’t need to shop around for information available on other shards. Requiring more communication and adding more complexity. Computer science knowledge and/or developer knowledge required links if you want to dig further: Scilla - language grammar Scilla - Foundations for Verifiable Decentralised Computations on a Blockchain Gas Accounting NUS x Zilliqa: Smart contract language workshop
 
Easier to follow links on programming Scilla https://learnscilla.com/home Ivan on Tech
 
Roadmap / Zilliqa 2.0
 
There is no strict defined roadmap but here are topics being worked on. And via the Zilliqa website there is also more information on the projects they are working on.
 
Business & Partnerships  
It’s not only technology in which Zilliqa seems to be excelling as their ecosystem has been expanding and starting to grow rapidly. The project is on a mission to provide OpenFinance (OpFi) to the world and Singapore is the right place to be due to its progressive regulations and futuristic thinking. Singapore has taken a proactive approach towards cryptocurrencies by introducing the Payment Services Act 2019 (PS Act). Among other things, the PS Act will regulate intermediaries dealing with certain cryptocurrencies, with a particular focus on consumer protection and anti-money laundering. It will also provide a stable regulatory licensing and operating framework for cryptocurrency entities, effectively covering all crypto businesses and exchanges based in Singapore. According to PWC 82% of the surveyed executives in Singapore reported blockchain initiatives underway and 13% of them have already brought the initiatives live to the market. There is also an increasing list of organisations that are starting to provide digital payment services. Moreover, Singaporean blockchain developers Building Cities Beyond has recently created an innovation $15 million grant to encourage development on its ecosystem. This all suggest that Singapore tries to position itself as (one of) the leading blockchain hubs in the world.
 
Zilliqa seems to already taking advantage of this and recently helped launch Hg Exchange on their platform, together with financial institutions PhillipCapital, PrimePartners and Fundnel. Hg Exchange, which is now approved by the Monetary Authority of Singapore (MAS), uses smart contracts to represent digital assets. Through Hg Exchange financial institutions worldwide can use Zilliqa's safe-by-design smart contracts to enable the trading of private equities. For example, think of companies such as Grab, AirBnB, SpaceX that are not available for public trading right now. Hg Exchange will allow investors to buy shares of private companies & unicorns and capture their value before an IPO. Anquan, the main company behind Zilliqa, has also recently announced that they became a partner and shareholder in TEN31 Bank, which is a fully regulated bank allowing for tokenization of assets and is aiming to bridge the gap between conventional banking and the blockchain world. If STOs, the tokenization of assets, and equity trading will continue to increase, then Zilliqa’s public blockchain would be the ideal candidate due to its strategic positioning, partnerships, regulatory compliance and the technology that is being built on top of it.
 
What is also very encouraging is their focus on banking the un(der)banked. They are launching a stablecoin basket starting with XSGD. As many of you know, stablecoins are currently mostly used for trading. However, Zilliqa is actively trying to broaden the use case of stablecoins. I recommend everybody to read this text that Amrit Kumar wrote (one of the co-founders). These stablecoins will be integrated in the traditional markets and bridge the gap between the crypto world and the traditional world. This could potentially revolutionize and legitimise the crypto space if retailers and companies will for example start to use stablecoins for payments or remittances, instead of it solely being used for trading.
 
Zilliqa also released their DeFi strategic roadmap (dating November 2019) which seems to be aligning well with their OpFi strategy. A non-custodial DEX is coming to Zilliqa made by Switcheo which allows cross-chain trading (atomic swaps) between ETH, EOS and ZIL based tokens. They also signed a Memorandum of Understanding for a (soon to be announced) USD stablecoin. And as Zilliqa is all about regulations and being compliant, I’m speculating on it to be a regulated USD stablecoin. Furthermore, XSGD is already created and visible on block explorer and XIDR (Indonesian Stablecoin) is also coming soon via StraitsX. Here also an overview of the Tech Stack for Financial Applications from September 2019. Further quoting Amrit Kumar on this:
 
There are two basic building blocks in DeFi/OpFi though: 1) stablecoins as you need a non-volatile currency to get access to this market and 2) a dex to be able to trade all these financial assets. The rest are build on top of these blocks.
 
So far, together with our partners and community, we have worked on developing these building blocks with XSGD as a stablecoin. We are working on bringing a USD-backed stablecoin as well. We will soon have a decentralised exchange developed by Switcheo. And with HGX going live, we are also venturing into the tokenization space. More to come in the future.”*
 
Additionally, they also have this ZILHive initiative that injects capital into projects. There have been already 6 waves of various teams working on infrastructure, innovation and research, and they are not from ASEAN or Singapore only but global: see Grantees breakdown by country. Over 60 project teams from over 20 countries have contributed to Zilliqa's ecosystem. This includes individuals and teams developing wallets, explorers, developer toolkits, smart contract testing frameworks, dapps, etc. As some of you may know, Unstoppable Domains (UD) blew up when they launched on Zilliqa. UD aims to replace cryptocurrency addresses with a human readable name and allows for uncensorable websites. Zilliqa will probably be the only one able to handle all these transactions onchain due to ability to scale and its resulting low fees which is why the UD team launched this on Zilliqa in the first place. Furthermore, Zilliqa also has a strong emphasis on security, compliance, and privacy, which is why they partnered with companies like Elliptic, ChainSecurity (part of PwC Switzerland), and Incognito. Their sister company Aqilliz (Zilliqa spelled backwards) focuses on revolutionizing the digital advertising space and is doing interesting things like using Zilliqa to track outdoor digital ads with companies like Foodpanda.
 
Zilliqa is listed on nearly all major exchanges, having several different fiat-gateways and recently have been added to Binance’s margin trading and futures trading with really good volume. They also have a very impressive team with good credentials and experience. They dont just have “tech people”. They have a mix of tech people, business people, marketeers, scientists, and more. Naturally, it's good to have a mix of people with different skill sets if you work in the crypto space.
 
Marketing & Community
 
Zilliqa has a very strong community. If you just follow their Twitter their engagement is much higher for a coin that has approximately 80k followers. They also have been ‘coin of the day’ by LunarCrush many times. LunarCrush tracks real-time cryptocurrency value and social data. According to their data it seems Zilliqa has a more fundamental and deeper understanding of marketing and community engagement than almost all other coins. While almost all coins have been a bit frozen in the last months, Zilliqa seems to be on its own bull run. It was somewhere in the 100s a few months ago and is currently ranked #46 on CoinGecko. Their official Telegram also has over 20k people and is very active, and their community channel which is over 7k now is more active and larger than many other official channels. Their local communities) also seem to be growing.
 
Moreover, their community started ‘Zillacracy’ together with the Zilliqa core team ( see www.zillacracy.com ). It’s a community run initiative where people from all over the world are now helping with marketing and development on Zilliqa. Since its launch in February 2020 they have been doing a lot and will also run their own non custodial seed node for staking. This seed node will also allow them to start generating revenue for them to become a self sustaining entity that could potentially scale up to become a decentralized company working in parallel with the Zilliqa core team. Comparing it to all the other smart contract platforms (e.g. Cardano, EOS, Tezos etc.) they don't seem to have started a similar initiatives (correct me if I’m wrong though). This suggest in my opinion that these other smart contract platforms do not fully understand how to utilize the ‘power of the community’. This is something you cannot ‘buy with money’ and gives many projects in the space a disadvantage.
 
Zilliqa also released two social products called SocialPay and Zeeves. SocialPay allows users to earn ZILs while tweeting with a specific hashtag. They have recently used it in partnership with the Singapore Red Cross for a marketing campaign after their initial pilot program. It seems like a very valuable social product with a good use case. I can see a lot of traditional companies entering the space through this product, which they seem to suggest will happen. Tokenizing hashtags with smart contracts to get network effect is a very smart and innovative idea.
 
Regarding Zeeves, this is a tipping bot for Telegram. They already have 1000s of signups and they plan to keep upgrading it for more and more people to use it (e.g. they recently have added a quiz features). They also use it during AMAs to reward people in real time. It’s a very smart approach to grow their communities and get familiar with ZIL. I can see this becoming very big on Telegram. This tool suggests, again, that the Zilliqa team has a deeper understanding what the crypto space and community needs and is good at finding the right innovative tools to grow and scale.
 
To be honest, I haven’t covered everything (i’m also reaching the character limited haha). So many updates happening lately that it's hard to keep up, such as the International Monetary Fund mentioning Zilliqa in their report, custodial and non-custodial Staking, Binance Margin, Futures & Widget, entering the Indian market, and more. The Head of Marketing Colin Miles has also released this as an overview of what is coming next. And last but not least, Vitalik Buterin has been mentioning Zilliqa lately acknowledging Zilliqa and mentioning that both projects have a lot of room to grow. There is much more info of course and a good part of it has been served to you on a silver platter. I invite you to continue researching by yourself :-) And if you have any comments or questions please post here!
submitted by haveyouheardaboutit to CryptoCurrency [link] [comments]

PoW or PoS: The Difference Between Mined and Non-Mined Crypto

PoW or PoS: The Difference Between Mined and Non-Mined Crypto
The whole crypto world discusses how Ethereum will switch from Proof of Work to Proof of Stake now. This change can significantly affect the cryptocurrency market. What are the positive and negative sides of PoW and PoS?
Cryptocurrencies can be divided into two types: those that can be mined (Bitcoin, Litecoin, Monero) and pre-mined ones (Ripple, Stellar, Cardano, EOS, NEO).

What is the big difference?

Although they differ in the method of generation, the basis of both types of crypto is the same: verification. Every transaction processed by the network must be verified by someone to ensure that virtual money has not been spent twice. Here we are talking about the difference in the verification process. Transaction groups are combined into a block; after verification, the block joins other previously confirmed blocks, and create a chain of transactions, or blockchain.

PoW: Mined Crypto

Mining is a process in which individuals, groups, or companies solve complex mathematical equations to verify transaction blocks using powerful computers. These math problems are part of the encryption process that protects transactions from cybercriminals and third party access.
The first who solves the problem and signs a block of transactions receives a reward. The miner, who confirmed the block of transactions e.g. in the Bitcoin network, receives a reward in BTC.

Disadvantages of Mined Crypto

  • Mining can be very expensive due to the large amounts of electricity consumed. In mined crypto with less capitalization, competition is usually lower than in BTC.
  • BTC mining requires special ASIC chips, that are combined into huge farms. Electricity is one of the main expenses for these projects. That is why China, where electricity is relatively cheap, has become a home to four of the five largest Bitcoin mining companies in the world.
  • Mining farms have to spend significant money funds on new equipment, which becomes out of date very fast.
  • Large projects need additional cooling, as servers and graphics cards heat up to high temperatures during operations.
  • The Proof-of-Work model is potentially vulnerable to a 51% attack (when a group of people with 51% of the computing power gains control of the network and its participants). For popular cryptocurrencies such as Bitcoin (BTC), Litecoin (LTC), and Monero (XMR) this is not a problem due to their large capitalization. However, minor cryptocurrencies with long block processing times and low daily volumes are risking a lot.

PoS: Non-Mined Crypto

At the other end of the spectrum are pre-mined cryptocurrencies such as Ripple (XRP), Stellar, Cardano, EOS, and NEO.
In the PoS model, super-powered computers are not needed, and participants do not compete for the right to sign the next block. Thus, the costs of this approach are significantly lower. Transaction verification is carried out by cryptocurrency owners. The more cryptocurrencies you have, the longer you own it, the higher the probability that you will be selected to check the transaction block.
Certain mechanisms are built into the system that prevents the dominance of large cryptocurrency holders over the verification process. There are many random ways to select owners who get the right to sign a transaction block. This ensures that small holders have a chance to participate in the process.

Disadvantages of Non-Mined Crypto

Despite the fact that the costs of the Proof-of-Stake method are lower, PoS has its drawbacks.
  • Such cryptocurrencies are not threatened by an attack of 51%, however, another trouble replaces it — a person who posses 51% of all tokens in circulation can gain control of the network and its participants. Of course, in the case of cryptocurrencies with high capitalization, the possibility of this scenario is low, but small partners may suffer from this vulnerability.
  • The Proof-of-Stake model also gives major owners additional votes in determining the future development of the network. Most NEO tokens) belong to several founders, for instance. This helps increase transaction speed and reduces consensus-building time, but also makes cryptocurrency too centralized. In other words, in the PoS model, large players gain significant power, which is theoretically impossible with the PoW model.

Which method is better?

Both methods have their pros and cons. Nevertheless, sooner or later, some of the largest mined currencies (e.g. BTC) will reach their token limit. At this point, they will have to switch to Proof-of-Stake. Since it significantly reduces power consumption and doesn't require powerful computers, gradually all crypto including BTC will switch to a non-mined model just like Ether did.

Keep up with the news of the crypto world at CoinJoy.io
Follow us on Twitter, Medium.
Subscribe to our YouTube channel.
Join our Telegram channel.
For any inquiries mail us at [[email protected]](mailto:[email protected]).
https://preview.redd.it/2ticyj57a6051.png?width=3300&format=png&auto=webp&s=2ed429625a45588ef371862af3bc1f71a23c34a3
submitted by CoinjoyAssistant to ethtrader [link] [comments]

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.

Bitcoin (BTC)A Peer-to-Peer Electronic Cash System.
  • Bitcoin (BTC) is a peer-to-peer cryptocurrency that aims to function as a means of exchange that is independent of any central authority. BTC can be transferred electronically in a secure, verifiable, and immutable way.
  • Launched in 2009, BTC is the first virtual currency to solve the double-spending issue by timestamping transactions before broadcasting them to all of the nodes in the Bitcoin network. The Bitcoin Protocol offered a solution to the Byzantine Generals’ Problem with a blockchain network structure, a notion first created by Stuart Haber and W. Scott Stornetta in 1991.
  • Bitcoin’s whitepaper was published pseudonymously in 2008 by an individual, or a group, with the pseudonym “Satoshi Nakamoto”, whose underlying identity has still not been verified.
  • The Bitcoin protocol uses an SHA-256d-based Proof-of-Work (PoW) algorithm to reach network consensus. Its network has a target block time of 10 minutes and a maximum supply of 21 million tokens, with a decaying token emission rate. To prevent fluctuation of the block time, the network’s block difficulty is re-adjusted through an algorithm based on the past 2016 block times.
  • With a block size limit capped at 1 megabyte, the Bitcoin Protocol has supported both the Lightning Network, a second-layer infrastructure for payment channels, and Segregated Witness, a soft-fork to increase the number of transactions on a block, as solutions to network scalability.

https://preview.redd.it/s2gmpmeze3151.png?width=256&format=png&auto=webp&s=9759910dd3c4a15b83f55b827d1899fb2fdd3de1

1. What is Bitcoin (BTC)?

  • Bitcoin is a peer-to-peer cryptocurrency that aims to function as a means of exchange and is independent of any central authority. Bitcoins are transferred electronically in a secure, verifiable, and immutable way.
  • Network validators, whom are often referred to as miners, participate in the SHA-256d-based Proof-of-Work consensus mechanism to determine the next global state of the blockchain.
  • The Bitcoin protocol has a target block time of 10 minutes, and a maximum supply of 21 million tokens. The only way new bitcoins can be produced is when a block producer generates a new valid block.
  • The protocol has a token emission rate that halves every 210,000 blocks, or approximately every 4 years.
  • Unlike public blockchain infrastructures supporting the development of decentralized applications (Ethereum), the Bitcoin protocol is primarily used only for payments, and has only very limited support for smart contract-like functionalities (Bitcoin “Script” is mostly used to create certain conditions before bitcoins are used to be spent).

2. Bitcoin’s core features

For a more beginner’s introduction to Bitcoin, please visit Binance Academy’s guide to Bitcoin.

Unspent Transaction Output (UTXO) model

A UTXO transaction works like cash payment between two parties: Alice gives money to Bob and receives change (i.e., unspent amount). In comparison, blockchains like Ethereum rely on the account model.
https://preview.redd.it/t1j6anf8f3151.png?width=1601&format=png&auto=webp&s=33bd141d8f2136a6f32739c8cdc7aae2e04cbc47

Nakamoto consensus

In the Bitcoin network, anyone can join the network and become a bookkeeping service provider i.e., a validator. All validators are allowed in the race to become the block producer for the next block, yet only the first to complete a computationally heavy task will win. This feature is called Proof of Work (PoW).
The probability of any single validator to finish the task first is equal to the percentage of the total network computation power, or hash power, the validator has. For instance, a validator with 5% of the total network computation power will have a 5% chance of completing the task first, and therefore becoming the next block producer.
Since anyone can join the race, competition is prone to increase. In the early days, Bitcoin mining was mostly done by personal computer CPUs.
As of today, Bitcoin validators, or miners, have opted for dedicated and more powerful devices such as machines based on Application-Specific Integrated Circuit (“ASIC”).
Proof of Work secures the network as block producers must have spent resources external to the network (i.e., money to pay electricity), and can provide proof to other participants that they did so.
With various miners competing for block rewards, it becomes difficult for one single malicious party to gain network majority (defined as more than 51% of the network’s hash power in the Nakamoto consensus mechanism). The ability to rearrange transactions via 51% attacks indicates another feature of the Nakamoto consensus: the finality of transactions is only probabilistic.
Once a block is produced, it is then propagated by the block producer to all other validators to check on the validity of all transactions in that block. The block producer will receive rewards in the network’s native currency (i.e., bitcoin) as all validators approve the block and update their ledgers.

The blockchain

Block production

The Bitcoin protocol utilizes the Merkle tree data structure in order to organize hashes of numerous individual transactions into each block. This concept is named after Ralph Merkle, who patented it in 1979.
With the use of a Merkle tree, though each block might contain thousands of transactions, it will have the ability to combine all of their hashes and condense them into one, allowing efficient and secure verification of this group of transactions. This single hash called is a Merkle root, which is stored in the Block Header of a block. The Block Header also stores other meta information of a block, such as a hash of the previous Block Header, which enables blocks to be associated in a chain-like structure (hence the name “blockchain”).
An illustration of block production in the Bitcoin Protocol is demonstrated below.

https://preview.redd.it/m6texxicf3151.png?width=1591&format=png&auto=webp&s=f4253304912ed8370948b9c524e08fef28f1c78d

Block time and mining difficulty

Block time is the period required to create the next block in a network. As mentioned above, the node who solves the computationally intensive task will be allowed to produce the next block. Therefore, block time is directly correlated to the amount of time it takes for a node to find a solution to the task. The Bitcoin protocol sets a target block time of 10 minutes, and attempts to achieve this by introducing a variable named mining difficulty.
Mining difficulty refers to how difficult it is for the node to solve the computationally intensive task. If the network sets a high difficulty for the task, while miners have low computational power, which is often referred to as “hashrate”, it would statistically take longer for the nodes to get an answer for the task. If the difficulty is low, but miners have rather strong computational power, statistically, some nodes will be able to solve the task quickly.
Therefore, the 10 minute target block time is achieved by constantly and automatically adjusting the mining difficulty according to how much computational power there is amongst the nodes. The average block time of the network is evaluated after a certain number of blocks, and if it is greater than the expected block time, the difficulty level will decrease; if it is less than the expected block time, the difficulty level will increase.

What are orphan blocks?

In a PoW blockchain network, if the block time is too low, it would increase the likelihood of nodes producingorphan blocks, for which they would receive no reward. Orphan blocks are produced by nodes who solved the task but did not broadcast their results to the whole network the quickest due to network latency.
It takes time for a message to travel through a network, and it is entirely possible for 2 nodes to complete the task and start to broadcast their results to the network at roughly the same time, while one’s messages are received by all other nodes earlier as the node has low latency.
Imagine there is a network latency of 1 minute and a target block time of 2 minutes. A node could solve the task in around 1 minute but his message would take 1 minute to reach the rest of the nodes that are still working on the solution. While his message travels through the network, all the work done by all other nodes during that 1 minute, even if these nodes also complete the task, would go to waste. In this case, 50% of the computational power contributed to the network is wasted.
The percentage of wasted computational power would proportionally decrease if the mining difficulty were higher, as it would statistically take longer for miners to complete the task. In other words, if the mining difficulty, and therefore targeted block time is low, miners with powerful and often centralized mining facilities would get a higher chance of becoming the block producer, while the participation of weaker miners would become in vain. This introduces possible centralization and weakens the overall security of the network.
However, given a limited amount of transactions that can be stored in a block, making the block time too longwould decrease the number of transactions the network can process per second, negatively affecting network scalability.

3. Bitcoin’s additional features

Segregated Witness (SegWit)

Segregated Witness, often abbreviated as SegWit, is a protocol upgrade proposal that went live in August 2017.
SegWit separates witness signatures from transaction-related data. Witness signatures in legacy Bitcoin blocks often take more than 50% of the block size. By removing witness signatures from the transaction block, this protocol upgrade effectively increases the number of transactions that can be stored in a single block, enabling the network to handle more transactions per second. As a result, SegWit increases the scalability of Nakamoto consensus-based blockchain networks like Bitcoin and Litecoin.
SegWit also makes transactions cheaper. Since transaction fees are derived from how much data is being processed by the block producer, the more transactions that can be stored in a 1MB block, the cheaper individual transactions become.
https://preview.redd.it/depya70mf3151.png?width=1601&format=png&auto=webp&s=a6499aa2131fbf347f8ffd812930b2f7d66be48e
The legacy Bitcoin block has a block size limit of 1 megabyte, and any change on the block size would require a network hard-fork. On August 1st 2017, the first hard-fork occurred, leading to the creation of Bitcoin Cash (“BCH”), which introduced an 8 megabyte block size limit.
Conversely, Segregated Witness was a soft-fork: it never changed the transaction block size limit of the network. Instead, it added an extended block with an upper limit of 3 megabytes, which contains solely witness signatures, to the 1 megabyte block that contains only transaction data. This new block type can be processed even by nodes that have not completed the SegWit protocol upgrade.
Furthermore, the separation of witness signatures from transaction data solves the malleability issue with the original Bitcoin protocol. Without Segregated Witness, these signatures could be altered before the block is validated by miners. Indeed, alterations can be done in such a way that if the system does a mathematical check, the signature would still be valid. However, since the values in the signature are changed, the two signatures would create vastly different hash values.
For instance, if a witness signature states “6,” it has a mathematical value of 6, and would create a hash value of 12345. However, if the witness signature were changed to “06”, it would maintain a mathematical value of 6 while creating a (faulty) hash value of 67890.
Since the mathematical values are the same, the altered signature remains a valid signature. This would create a bookkeeping issue, as transactions in Nakamoto consensus-based blockchain networks are documented with these hash values, or transaction IDs. Effectively, one can alter a transaction ID to a new one, and the new ID can still be valid.
This can create many issues, as illustrated in the below example:
  1. Alice sends Bob 1 BTC, and Bob sends Merchant Carol this 1 BTC for some goods.
  2. Bob sends Carols this 1 BTC, while the transaction from Alice to Bob is not yet validated. Carol sees this incoming transaction of 1 BTC to him, and immediately ships goods to B.
  3. At the moment, the transaction from Alice to Bob is still not confirmed by the network, and Bob can change the witness signature, therefore changing this transaction ID from 12345 to 67890.
  4. Now Carol will not receive his 1 BTC, as the network looks for transaction 12345 to ensure that Bob’s wallet balance is valid.
  5. As this particular transaction ID changed from 12345 to 67890, the transaction from Bob to Carol will fail, and Bob will get his goods while still holding his BTC.
With the Segregated Witness upgrade, such instances can not happen again. This is because the witness signatures are moved outside of the transaction block into an extended block, and altering the witness signature won’t affect the transaction ID.
Since the transaction malleability issue is fixed, Segregated Witness also enables the proper functioning of second-layer scalability solutions on the Bitcoin protocol, such as the Lightning Network.

Lightning Network

Lightning Network is a second-layer micropayment solution for scalability.
Specifically, Lightning Network aims to enable near-instant and low-cost payments between merchants and customers that wish to use bitcoins.
Lightning Network was conceptualized in a whitepaper by Joseph Poon and Thaddeus Dryja in 2015. Since then, it has been implemented by multiple companies. The most prominent of them include Blockstream, Lightning Labs, and ACINQ.
A list of curated resources relevant to Lightning Network can be found here.
In the Lightning Network, if a customer wishes to transact with a merchant, both of them need to open a payment channel, which operates off the Bitcoin blockchain (i.e., off-chain vs. on-chain). None of the transaction details from this payment channel are recorded on the blockchain, and only when the channel is closed will the end result of both party’s wallet balances be updated to the blockchain. The blockchain only serves as a settlement layer for Lightning transactions.
Since all transactions done via the payment channel are conducted independently of the Nakamoto consensus, both parties involved in transactions do not need to wait for network confirmation on transactions. Instead, transacting parties would pay transaction fees to Bitcoin miners only when they decide to close the channel.
https://preview.redd.it/cy56icarf3151.png?width=1601&format=png&auto=webp&s=b239a63c6a87ec6cc1b18ce2cbd0355f8831c3a8
One limitation to the Lightning Network is that it requires a person to be online to receive transactions attributing towards him. Another limitation in user experience could be that one needs to lock up some funds every time he wishes to open a payment channel, and is only able to use that fund within the channel.
However, this does not mean he needs to create new channels every time he wishes to transact with a different person on the Lightning Network. If Alice wants to send money to Carol, but they do not have a payment channel open, they can ask Bob, who has payment channels open to both Alice and Carol, to help make that transaction. Alice will be able to send funds to Bob, and Bob to Carol. Hence, the number of “payment hubs” (i.e., Bob in the previous example) correlates with both the convenience and the usability of the Lightning Network for real-world applications.

Schnorr Signature upgrade proposal

Elliptic Curve Digital Signature Algorithm (“ECDSA”) signatures are used to sign transactions on the Bitcoin blockchain.
https://preview.redd.it/hjeqe4l7g3151.png?width=1601&format=png&auto=webp&s=8014fb08fe62ac4d91645499bc0c7e1c04c5d7c4
However, many developers now advocate for replacing ECDSA with Schnorr Signature. Once Schnorr Signatures are implemented, multiple parties can collaborate in producing a signature that is valid for the sum of their public keys.
This would primarily be beneficial for network scalability. When multiple addresses were to conduct transactions to a single address, each transaction would require their own signature. With Schnorr Signature, all these signatures would be combined into one. As a result, the network would be able to store more transactions in a single block.
https://preview.redd.it/axg3wayag3151.png?width=1601&format=png&auto=webp&s=93d958fa6b0e623caa82ca71fe457b4daa88c71e
The reduced size in signatures implies a reduced cost on transaction fees. The group of senders can split the transaction fees for that one group signature, instead of paying for one personal signature individually.
Schnorr Signature also improves network privacy and token fungibility. A third-party observer will not be able to detect if a user is sending a multi-signature transaction, since the signature will be in the same format as a single-signature transaction.

4. Economics and supply distribution

The Bitcoin protocol utilizes the Nakamoto consensus, and nodes validate blocks via Proof-of-Work mining. The bitcoin token was not pre-mined, and has a maximum supply of 21 million. The initial reward for a block was 50 BTC per block. Block mining rewards halve every 210,000 blocks. Since the average time for block production on the blockchain is 10 minutes, it implies that the block reward halving events will approximately take place every 4 years.
As of May 12th 2020, the block mining rewards are 6.25 BTC per block. Transaction fees also represent a minor revenue stream for miners.
submitted by D-platform to u/D-platform [link] [comments]

Monero Deep Dive: The Cryptocurrency To Use If You Want True Anonymity, Far More Anonymous Than Bitcoin

http://www.cypherpunklabs.com/monero-deep-dive-the-cryptocurrency-to-use-if-you-want-true-anonymity-far-more-anonymous-than-bitcoin/
In the early days of cryptocurrency Bitcoin was considered the best payment method for those who wished to stay anonymous. At the time this was true, since Bitcoin required no personal identification information while fiat payment methods like banks and PayPal required a full suite of personal identification information. However, all Bitcoin transactions in history are stored on a publicly accessible block explorer, and with the rise of blockchain forensics it is now possible to figure out who owns a Bitcoin address and what they have been doing with their Bitcoin. Although it is possible to increase Bitcoin’s anonymity by using Tor, VPNs, and CoinJoin, as will be discussed in future Cypherpunk Labs articles, Bitcoin can only be considered pseudo-anonymous rather than fully anonymous.
Nicolas van Saberhagen recognized that Bitcoin lacked full anonymity, in addition to the fact that it is a slow and difficult process to change Bitcoin’s code. Saberhagen proposed to create a new cryptocurrency that was far more anonymous, in addition to correcting some other apparent deficiencies in Bitcoin, and wrote up these ideas in the CryptoNote White Paper.
The first cryptocurrency to utilize the ideas in the CryptoNote White Paper was Bytecoin (BCN), which is a lesser known but still functional stealth cryptocurrency. Bitcointalk user thankful_for_today modified the code from Bytecoin and created BitMonero), but there was community criticism since not everything in the CryptoNote White Paper was adopted. This caused thankful_for_today to apparently abandon the project, but a group of users led by Johny Mnemonic quickly took over and renamed the cryptocurrency Monero (XMR).
One of the most critical pieces of stealth technology that Monero uses is ring signatures. With Bitcoin a transaction is signed with a user’s private key and can be verified with the public key. With a ring signature a transaction is signed by your key as well as the public keys from several other outputs on the blockchain using a triangular distribution method. Essentially, each Monero transaction is signed by a group of keys, and it is not possible to distinguish which key the transaction originated from. This can be thought of as decentralized and trustless mixing, and ultimately ring signatures hide the destination and origin of a transaction.
Eventually Monero upped the ante and implemented ring signature confidential transactions (RingCT), which uses multi-layered linkable spontaneous anonymous group signatures to hide the amount of a transaction. However, RingCT transactions required a large amount of data in order to ensure that the sum of inputs and outputs equaled zero, and bulletproofs were implemented to solve this problem. More about bulletproofs can be read in this paper. Essentially, bulletproofs helped reduce transaction size, lowering transaction fees on the Monero network, and also made it cheaper to create transactions with higher degrees of complexity.
Another critical piece of technology that makes Monero anonymous is stealth addresses. The sender creates a random one-time address for every transaction on behalf of the recipient. This allows a recipient to have just one published address but all of their incoming transactions go to different addresses on the blockchain. Thanks to stealth addresses, only the sender and receiver can determine where a payment was sent, while an outside observer cannot figure that out.
A Monero user can see incoming transactions with their view key, and anyone without the view key cannot see the incoming transactions to any particular address. This view key can be shared, so Monero can be considered optionally transparent, but the default is stealth.
When a Monero user decides to spend their coins, the Monero in a stealth address is broken down into its components and combined with other equivalent components via ring signatures. For example, if 42.42 Monero is sent, then the coins are split into 40 + 2 + 0.4 + 0.02 and combined with other 40’s, 2’s, 0.4’s, and 0.02’s somewhere else in the blockchain. This renders outputs fundamentally indistinguishable, and Unlike Bitcoin’s CoinJoin, no participation from anyone else is needed since already present outputs are being mixed.
Further, Monero tried to increase decentralization of its network by being incompatible with application specific integrated circuits (ASICs) via the CryptoNight protocol. This was originally accomplished by requiring a MB of internal memory, which was unacceptable to ASICs at the time. Also, Monero fit into the L3 cache of modern CPUs, while simultaneously being slower on GPUs, hindering the efficiency of GPU mining firms. That being said, it seems if a cryptocurrency is valuable enough then an ASIC is eventually created for it, and the Monero developers have been in a long term battle where they have to periodically change their mining protocol in order to prevent ASICs from overtaking the network. Monero is expected to release their new mining algorithm, RandomX, in October in order to stomp out the ASICs once again.
It seems the Monero developers are succeeding in their fight against ASIC centralization, and generally Monero is the most profitable cryptocurrency to mine on a personal computer while it is not that profitable with ASICs. This is important because it allows regular joes to mine Monero on their personal computer, decentralizing the network hash rate, as opposed to Bitcoin which is practically impossible to mine on a personal computer and most of the hash rate is in the hands of big mining farms.
Also, Monero uses dynamic block sizes, ensuring low transaction fees and fast confirmation times, as opposed to Bitcoin which often has a clogged mempool which can lead to long waits for confirmations and high transaction fees.
Additionally, Monero technically has an infinite supply since the minimum block reward is 0.6 XMR, and this will be reached in 2040. This ensures that miners will always have an incentive to secure the network long term, even if transaction fees are kept as low as possible. Compare this to Bitcoin where block rewards will approach zero, which may wreck the mining community if transaction fees are not high enough.
Thus, Monero’s ring signatures, RingCT, bulletproofs, and stealth addresses combine to obfuscate the sender, receiver, and amount of the transaction, and transactions are split into chunks that are indistinguishable from other transactions. This provides far more privacy than Bitcoin, since Bitcoin transactions are easily traced on a block explorer. It is clear that Monero is an excellent choice for those that want true anonymity when using cryptocurrency. That being said, it is important to use encrypted messaging as well when organizing a Monero transaction, since anonymity can be compromised if a message regarding a Monero transaction is intercepted.
submitted by turtlecane to Monero [link] [comments]

Fortnight Tech Roundup & Discourse - IRNSS NavIC

Fortnight Tech Roundup & Discourse - IRNSS NavIC

Welcome to this week's tech round up and discourse post.

https://preview.redd.it/4we80sfojis31.png?width=728&format=png&auto=webp&s=bcd7e967359f9a1ebb7f8aa7903cb35d86891e44

EBay, Stripe and Mastercard drop out of Facebook’s Libra Association techcrunch
Club Factory raises $100M to expand its lifestyle e-commerce platform in India economictimes
Donald Trump joins Amazon's video game streaming platform Twitch cnn
Bill McDermott steps down as SAP’s CEO wsj
Elon Musk says that NASA is free to share all SpaceX IP with ‘anyone it wants’ gizmodo
NASA’s new Moon-bound spacesuit is safer, smarter and much more comfortable nasa.gov
Steam will soon let you play local-only multiplayer games with far off friends pcgamer
Dyson kills its electric car project and turns to solid-state batteries guardian
Amazon Music arrives on Apple TV pocket-lint
Google takes AMP to the OpenJS Foundation openjsf
Russia’s Yandex introduces an Echo Dot-style smart speaker techcrunch
Cisco hit by an internal network outage cbronline
Xage now supports hierarchical blockchains for complex implementations globenewswire
NASCAR could debut hybrids as early as 2022 thedrive
Apple pulls HKmap from App Store, the day after Chinese state media criticized its ‘unwise and reckless decision’ to approve it cnbc
Virgin Orbit plans to send cubesats to Mars as early as 2022 cnet
Call of Duty is the biggest mobile game launch ever, with 100 million downloads independent
Pinterest launches a new ‘Lite’ app for emerging markets androidpolice
Microsoft’s Your Phone app can now route calls from your Android phone to your PC blog.windows
European risk report flags 5G security challenges techcrunch
Toyota, GM, Nvidia, Bosch, Arm and others form new autonomous driving tech consortium theiet
China attacks Apple for allowing Hong Kong crowdsourced police activity app nyt
AMD’s Radeon RX 5500 is its new entry-level competitor to Nvidia’s GTX 1650 pcworld
Amazon, Walmart confront India’s slowing economy as holiday season growth stalls techcrunch
Essential reveals Project Gem smartphone with very long, unusual design engadget
Twitter admits it used two-factor phone numbers and emails for serving targeted ads help.twitter
Arm brings custom instructions to its embedded CPUs developer.arm
Sony’s next console is the PlayStation 5, arriving holidays 2020 theverge
Chinese firms Tencent, Vivo and CCTV suspend ties with the NBA over Hong Kong tweet edition.cnn
Eight Chinese tech firms placed on US Entity List for their role in human rights violations against Muslim minority groups techcrunch
Mars Curiosity Rover finds evidence of an ancient oasis on Mars earthsky
Instagram is killing its creepy stalking feature, the Following tab androidpolice
Ex-Tinder CEO files lawsuit saying sexual assault allegations against him are defamation theverge
Fire TV might not get Disney+ as Amazon and Disney clash over ads variety
Amazon introduces a Kindle for kids indiatoday
Apple’s MacOS Catalina is now available 9to5mac
Spotify gains Siri support on iOS 13, arrives on Apple TV forbes
Disney is reportedly banning Netflix ads across its entertainment TV networks theverge
Red Dead Redemption 2 is coming to PC in November rockpapershotgun
NASA shares 3D Moon data for CG artists and creators space
PayPal is the first company to drop out of the Facebook-led Libra Association economictimes
Iranian hackers targeted US 2020 campaign, says Microsoft bbc
Apple CEO Tim Cook slams Facebook’s Libra cryptocurrency as a power grab forbes
Google-backed Dunzo raises $45M to expand its hyperlocal delivery startup in India fortuneindia
NASA’s first all-electric experimental X-plane is ready for testing nasa.gov
Facebook is being leaned on by US, UK, Australia to ditch its end-to-end encryption expansion plan macrumorsInstagram launches Threads, a Close Friends chat app with auto-status wired
India’s Fyle bags $4.5M to expand its expense management platform in the US, other international markets techcrunch
Uber launches a shift-work finder app, Uber Works, starting in Chicago tnw
Redesigned Google Shopping goes live, with price tracking, Google Lens for outfits and more pcmag
Zuckerberg Plans to Sue if Elizabeth Warren Tries to Break Up Facebook gizmodo
Samsung pulls the plug on Chinese smartphone production techcrunch
Microsoft showcases an Android Surface 'phone' and dual-screen Windows Variant cnet
Microsoft’s latest Surface Laptop arrives in 13- and 15-inch models theverge
India’s NoBroker raises $50M to help people buy and rent without real estate brokers business-standard
Cybersecurity giant Comodo can’t even keep its own website secure forums.comodo
NASA awards $43.2M to Blue Origin, SpaceX and others for tech to take us to the Moon and Mars techcrunch
NASA launches a new planet-hunting telescope using a giant balloon phys.org
UPS gets FAA approval to operate an entire drone delivery airline nyt
Streamlit launches open-source machine learning application development framework techcrunch
WhatsApp tests self-destructing messages theverge
Europe’s top court says active consent is needed for tracking cookies techcrunch
SpaceX details Starship and Super Heavy in new website techcrunch
Hyundai is getting into the flying car business newatlas
Microsoft makes Windows Virtual Desktop generally available globally zdnet
Google's Project Jacquard is available on new Levi's jackets youtube
PayPal to enter China through GoPay acquisition venturebeat

https://preview.redd.it/rnwzqv5qjis31.png?width=728&format=png&auto=webp&s=dbf144fb35009e7e997741e70685b2c05075a099

The Indian Regional Navigation Satellite System (IRNSS) recently become fully-operational and has been provided with the operational name of NavIC (Navigation with Indian Constellation). Developed by the Indian Space Research Organization (ISRO) with the objective of offering positioning, navigation and timing (PNT) to the users on a variety of platforms with a 24 hour x 7 day service availability under all weather conditions - in its service area with a position accuracy of < 20 m throughout India and within the region of coverage extending about 1500 km beyond. nih.gov
Having an autonomous regional satellite navigation system of one’s own offers strategic autonomy in military operations. The GPS that we have known and used all along is the satellite-based radio navigation system owned by the US government and operated by the American Air Force. During the Kargil War 20 years ago, the US refused to provide India critical information on the movement and precise location of Paki enemy troops. toi A need for an indigenous satellite navigation was felt earlier, but Kargil experience made the nation realize it's inevitability. Geopolitical needs teaches us that some countries can deny us the service in times of conflict, a way of arm twisting.
With an accuracy of <10 m on Restricted and Encrypted Service (RES) while an accuracy of <20 m on Standard Positioning Service (SPS), IRNSS will offer 2 level of services for very differing purposes. isro.gov.in \PDF]) Almost all Military and Reconnaissance applications will utilize RES while SPS will be available for civilian uses. unvienna \PDF])

The IRNSS space segment architecture consists of 3 satellites in GEO (Geostationary Orbit) at 32.5°, 83° and 131.5° East while 4 satellites in geosynchronous orbit placed at inclination of 29° with longitude crossing at 55° and 111.75° East forming an analemma. isac.gov.in Out of the 4 GSO satellites, the first sat IRNSS-1A failed in orbit due to atmoic clock malfunction. On August 31, 2017, sat IRNSS-1H was meant to replace defunct IRNSS-1A, failed to deploy due to malfunction in payload fairing mechanism. Though failures are not uncommon in space missions of even developed nations, India is not in a position where it can afford even relatively minor glitches neither financially nor in terms of reaching the higher goals it has set for itself. firstpost

IRNSS Analemma

Unlike GPS which is dependent only on L-band, NAVIC has dual frequency (S and L bands). When low frequency signal travels through atmosphere, its velocity changes due to atmospheric disturbances. US banks on atmospheric model to assess frequency error and it has to update this model from time to time to assess the exact error. In India's case, the actual delay is assessed by measuring the difference in delay of dual frequency (S and L bands). Therefore, NavIC is not dependent on any model to find the frequency error and is more accurate than GPS. toi
Studies have also shown marked improvement in GDoP (Geometric dilution of precision) values when IRNSS is used in conjunction with GPS constellation for position fix in primary coverage region of IRNSS. Hence IRNSS can be augmented with GPS to improve position accuracy in the given region. ias.ac.in

The IRNSS is being developed parallel to the GAGAN (GPS Aided GEO Augmented Satellite Navigation) program that in essence use GPS signals for navigation but after making them much more reliable for safety critical applications like in civil aviation., the ISRO SBAS (Satellite Based Augmentation System) version of an overlay system for GNSS signal corrections. earth.esa.int As of 2013, the statutory filing for frequency spectrum of Global Indian Navigational System (GINS) satellite orbits in international space, has been completed. hindubusinessline GINS is supposed to have a constellation of 24 satellites, positioned 24,000 km (14,913 mi) above Earth. wikipedia)

On Sep 24, 2019 Global mobile telephony standards body, 3GPP, gave its approval to NaVIC (Proposed jointly by Reliance Jio and ISRO). 3gpp.org \XLSX]) The approval has been given for the system’s use in Rel-16 LTE and Rel-17 5G NR specifications, paving the way for wider commercial adoption of NaVIC, allowing it to be integrated with 4G, 5G and internet of things (IoT). 3gpp.org \ZIP]) Thus, electronics companies can start designing and building integrated circuits and mass manufacture other products uniquely created to be compatible with NavIC. From what all scant information I was able to gather it seems Broadcom was first to introduce BCM47756 3gpp.org \ZIP]) chipset integrated with NavIC and Xiaomi Mi8 was the first phone to have the capabilities. insidegnss Will the introduction of indigenous satnav be another step closer towards being a global power? Comments open.
PS: Here's an interesting presentation prepared by Space Application Center that goes a little deep inside Navigation with Indian Constellation http://www.unoosa.org/documents/pdf/icg/2018/icg13/05.pdf

https://preview.redd.it/rq1t1odrjis31.png?width=728&format=png&auto=webp&s=9f2f0b2378fd62736d103e3076796c4506991c60

And in the last, here's 19th-Century Vision of the Year 2000 by Jean-Marc Côté and other artists issued in France in 1899, 1900, 1901 and 1910. Originally in the form of paper cards enclosed in cigarette/cigar boxes and, later, as postcards, the images depicted the world as it was imagined to be like in the then distant year of 2000.
https://preview.redd.it/wbvg455vjis31.jpg?width=800&format=pjpg&auto=webp&s=1ea5d13ddcf69a504c6d85d6aee7c22adedd6923
https://preview.redd.it/76ng555vjis31.jpg?width=800&format=pjpg&auto=webp&s=0d40d7ae8bdc82cd365094bf5e3bc31b1ea4947b
https://preview.redd.it/t406z35vjis31.jpg?width=800&format=pjpg&auto=webp&s=d73baf81b5ea59d2d7ac90ca1e0012a3dc819f66
https://preview.redd.it/avvu855vjis31.jpg?width=800&format=pjpg&auto=webp&s=bd6ecdfb220d905e42bb58d2cb70ab414e106533
https://preview.redd.it/oyvr745vjis31.jpg?width=800&format=pjpg&auto=webp&s=fd2df679603e6930592c2f8f9597377405a363a1
https://preview.redd.it/q0vbh55vjis31.jpg?width=800&format=pjpg&auto=webp&s=ab307f3bc184a76f69e5aece06cdd0562ef0a3f7
https://preview.redd.it/ct8e855vjis31.jpg?width=800&format=pjpg&auto=webp&s=de64792a76ccc5896a46db0472cfbeb1a952bbb8
https://preview.redd.it/2e99m45vjis31.jpg?width=800&format=pjpg&auto=webp&s=d69dd41cfb299104f325beaa93d1813c24137b69
https://preview.redd.it/77fey45vjis31.jpg?width=800&format=pjpg&auto=webp&s=e15c3f05c6c414f5c03b1720b7a1acc4c6e72e77
https://preview.redd.it/2m6eva5vjis31.jpg?width=800&format=pjpg&auto=webp&s=c72c59d1bea9dba4af8ea022fda9bab3bc53e59f
https://preview.redd.it/i9n66b5vjis31.jpg?width=800&format=pjpg&auto=webp&s=661517f876c117b8403d4f262be8329f134766ea
https://preview.redd.it/z6obo19vjis31.jpg?width=800&format=pjpg&auto=webp&s=8ab8c4f6f8dba66248866400d1e31d978f585ee4
https://preview.redd.it/hgzq795vjis31.jpg?width=800&format=pjpg&auto=webp&s=352d60e89923bad1673f90d824efbfb0a90670b0
https://preview.redd.it/5zndz35vjis31.jpg?width=800&format=pjpg&auto=webp&s=88b945b5f37297fd32d6664db7c7c8da4b2f95f7
https://preview.redd.it/4ba96y8vjis31.jpg?width=800&format=pjpg&auto=webp&s=b7bca19a3427f5e7a2532edc33dd849fbef69ce8

Source: https://commons.wikimedia.org/wiki/Category:France_in_XXI_Century_(fiction))
submitted by chummekiraat to IndiaSpeaks [link] [comments]

Parallels between two disruptive technologies: Internet & Blockchain – Part II

Parallels between two disruptive technologies: Internet & Blockchain – Part II
In part two of this blog, we will explore the parallels between the technologies in capitals and start-ups, in the decentralization of the blockchain as the main aspect that will revolutionize the Internet and in education. To read up on the first blog post, please follow this link.
Initial Start-Ups and Capitals
For more than 20 years the Internet was narrowed down to the usage of a few tech-savvy that knew how to navigate it. It’s only in 1993-94 that it became mainstream when Marc Andreessen created the Mosaic) browser while studying at the National Center for Supercomputing Applications (NCSA) and brought the Internet to the general public allowing them to navigate the web comfortably with a positive user-friendly experience.
For the first time, users could establish an active presence over the internet by loading their own documents, photos, sounds, video clips, and hypertext “links” to other documents. Navigation of the internet started to have meaning. Later on, Marc Andreessen was on the team that created Netscape, the Internet browser that reached 38 million users in eighteen months and IPO’d in record time, breaking records as far as company growth while becoming the first dot-com company. Silicon Valley and Wall Street jumped on the rapid success of Netscape and started the “Internet Big bang” with a new wave of tech startups trying to follow a similar path.
In the blockchain world, Bitcoin (2008) was the first application of the technology, the most disruptive, and its first wave of users, just like in the first internet era, was also more on the technical savvy side. Despite the significant injection of capital into the blockchain space, we have not had yet a killer app or project that could compare to Mosaic or Netscape.
If blockchain is a synonym of decentralization, so far the unicorns in the space are centralized companies with traditional business models like Coinbase, Binance which are centralized exchanges, and Bitmain, a privately owned company headquartered in Beijing, China that specializes in the design of application-specific integrated circuit chips for bitcoin mining. This is why we still believe to be in the early stages of blockchain technological cycle similar to 1994 during the Internet Revolution, expecting more market cycles to happen in the upcoming years.
A look at the market capitalization of the two technologies highlights a notable difference: according to CBInsights, in the 1990s venture capitals injected in Internet startups were around $35.6 billion while so far we’ve seen no more than $6 billion flowing into the blockchain space. The good news is that the trend is moving up and the potential is to reach $10 trillion between Bitcoin and other cryptocurrencies combined.
https://preview.redd.it/3oonw2fopka41.jpg?width=5472&format=pjpg&auto=webp&s=167f366b4ee2eaf47fdf89e418ee498eb8e8a958
Some Venture Capitals, like Node Capital, smelled early the potential of the tech and made their first investments in the industry in 2011. In 2018, there were more than 200 venture investments in blockchain and cryptocurrency companies, more than in all of 2011-2015 combined.
Digital Currency Group is one of the major investors in the space and has been extremely influential in blockchain since 2013. They started off with an investment of less than a million US dollars, in crypto payment processor BitPay. Since then they have invested close to $100 million in dozens of blockchain and cryptocurrency startups including Coinbase and Ripple.
For more info, contact Block.co directly or email at [email protected].
Tel +357 70007828
Get the latest from Block.co, like and follow us on social media:
✔️Facebook
✔️LinkedIn
✔️Twitter
✔️YouTube
✔️Medium
✔️Instagram
✔️Telegram
✔️Reddit
✔️GitHub
submitted by BlockDotCo to u/BlockDotCo [link] [comments]

[EVENT] Begone, THOT!

CHICAGO TRIBUNE

MIDWEST

A Penny For Your THOT

New Cryptocurrency Announced at Secret Hacking Conference in Chicago

Associated Press | November 23, 2032 | 11:27 PM | CHICAGO
Several members of the local DEF CON 312 chapter have quietly unveiled the all-new cryptocurrency THOT at this year’s THOTCON, the 23-year-old hacking conference hosted annually at an undisclosed location within the Chicago Metropolitan Area. While THOTCON is traditionally a platform for the exploration of cutting-edge security issues, the timing of the cryptocurrency’s announcement appears to have been heavily influenced by the collapse of the American economy and the continued embargo against the State of Texas. “They’re all interested in financial security,” Nick Percoco, a THOTCON organizer, said when questioned about this year’s attendees. “It’s a little unusual, but with a big recession looming and a potential retaliatory strike from the Union State, I don’t really blame them.” Originally created by a team of students from the McCormick School of Engineering and named in honour of the main Chicago Area Code (THree-One-Two), THOT is already widely (and unofficially) exchanged throughout Northwestern University’s student body. One of the cryptocurrency’s co-founders, Isaac Jacobs, explained during the conference that THOT “is an open source blockchain-based cryptocurrency that prioritizes privacy and decentralization above all else.”
THOT borrows characteristics from existing blockchain platforms such as Monero and Ethereum. Like the former, it uses an obfuscated public ledger that prevents observers from identifying the source, amount, or destination of the transaction and combines this feature with stealth addresses, ring signatures, and a coinjoin scheme to pool currency, adding additional layers of opaqueness for each individual transaction. While THOT is a pure cryptocurrency (unlike Ethereum, which is both distributed computing platform and operating system), it has a 3.5% inflation cap relying on scaling difficulty in proof of work and uses an internal transaction fee system to allocate resources across the network and reduce spam. THOT uses the Data and Intelligence Corporation’s proprietary method of verification, including a Proof of Work mechanism to issue new tokens, incentivizing miners to secure the network and validate transactions while reducing the advantage of specialized ASICs in mining and keeping the currency decentralized.
“Beyond just a tradeable cryptocurrency, THOTs can act as a stake used to insure financial instruments on the blockchain,” Jacobs stated, when asked about the applications of the new monetary device. “For example, self-executing smart contracts will require a certain amount of THOTs to be sent along as crypto tokens to encourage a given transaction’s inclusion by miners in the blockchain. For any corporations that choose to adopt THOT, execution of instruments would instead result in a dividend paid in cryptocurrency to those processing it, founded on the contract's value. THOT would also be used for data royalties, encouraging third parties to adopt a stake in THOT to insure the security and validity of the instrument.” Jacobs was quick to point out that this architecture incentivizes expenditure of THOT to boost the processing of transactions, encouraging circulation of the currency.
THOT is currently the preferred medium of exchange between participants (and is likely to remain so while THOTCON continues), but its wider impact beyond its initial early adopters is undetermined at this time.
submitted by King_of_Anything to worldpowers [link] [comments]

Burstcoin (BURST): A Dark Horse That Could Become A Major Cryptocurrency, The King of Proof of Capacity

Burstcoin (BURST): A Dark Horse That Could Become A Major Cryptocurrency, The King of Proof of Capacity
https://preview.redd.it/nt1qbc9cq4221.png?width=572&format=png&auto=webp&s=d867a4c98e7ab7e9c37c7dc23cc7fb251a5ecec7
https://cryptoiq.co/burstcoin-burst-a-dark-horse-that-could-become-a-major-cryptocurrency-the-king-of-proof-of-capacity/
Currently the cryptocurrency space is flooded with copycat coins and initial coin offering (ICO) tokens, most of which are moving steadily down the ranks on CoinMarketCap as the bear market of 2018 continues. This bear market is weeding out cryptocurrencies that have little long term potential, and cryptocurrencies that have strong communities and unique technology are rising to the top. Burstcoin (BURST) is one such cryptocurrency that is rising to the top, like cream in a glass of fresh milk. This is because the Burstcoin community is filled with diehard Cypherpunks, and BURST is the king of Proof of Capacity.
Back in the middle of October 2018 BURST was at #248 on CoinMarketCap, which was before the ‘nuclear’ bear market took effect, where the support level was broken due to the Bitcoin Cash hard fork, Bakkt delaying the launch of physical Bitcoin futures, and the Securities and Exchange Commission (SEC) initiating its first civil enforcement penalties against ICOs. BURST has decreased in price like every other cryptocurrency, but is rising relative to other cryptocurrencies, and as of 3 December 2018 sits at #199 on CoinMarketCap with a market cap of USD 13.5 million.
This increase in the price of BURST relative to other cryptocurrencies is due to Burstcoin’s unique technology. Burstcoin is the king of Proof of Capacity, a mining algorithm that uses the hard drive, versus raw computational power like with Proof of Work, and is much more energy efficient than Proof of Work. Proof of Capacity works by writing cryptographic hashes to an allotted segment of a hard drive called a plot. This plot is then read during mining to find the correct cryptographic hash, and whoever finds the cryptographic hash the fastest receives the block reward. More hard drive space dedicated to the plot equals more cryptographic hashes available, making it easier to find an answer and earn the BURST block reward.
Currently 1TB generates 1-2 BURST per day, and even though this is only equivalent to about a penny, it is all profit since reading the plot file requires a negligible amount of energy, and BURST miners can use their computer for other activities without impediment. Compare this to Proof of Work, which slows down personal computers and costs more electricity than the cryptocurrency it mines. BURST is one of the only cryptocurrencies that can be profitably mined on personal computers.
Further, unlike with Proof of Work where specialized mining equipment is required like application specific integrated circuits (ASICs), anyone with a computer or even mobile phone can mine BURST, and if they decide to stop mining BURST they can simply delete their plot file and use the hard drive space for other things. This is unlike ASICs, which cannot be used for anything but mining, so if someone decides to stop mining they lose all the money invested into the ASIC.
The ease of mining and negligible energy usage has led to the formation of a strong BURST mining community, with over 200,000 TB securing the BURST network. This is equivalent to hundreds of thousands of personal computers. The expansive mining community gives BURST value, and some of these miners are blockchain developers, and they have been building a full suite of technology based on the Burstcoin blockchain.
CloudBurst immutably stores files directly on the Burstcoin blockchain, for a small 1-time fee. Real blockchain storage is a rarity in the cryptocurrency world. The file will be stored as long as the Burstcoin blockchain exists, which is the foreseeable future and beyond considering the expansive BURST mining community. Cloudburst would be useful if you lost your computer and all of your backups in a natural disaster like a hurricane, and is a more secure solution than cloud storage like Google. Also, the Burstcoin wallet can be used to easily issue cryptocurrencies that are based off of the Burstcoin blockchain, and there is a decentralized exchange built-in to the wallet to trade these crypto assets.
Cryptocurrency scalability is a problem even for major cryptocurrencies like Bitcoin and Ethereum, but Burstcoin has tackled and solved this problem with the launch of the Dymaxion. The scalability of the Dymaxion is so powerful that it can handle all the non-cash transactions in the world. This is done via the utilization of tangle-based lightning networks on top of the Burstcoin blockchain. Transactions done via the Dymaxion are instant, with no fees and practically no energy expenditure. The Dymaxion gives Burstcoin the room to grow as much as it needs to.
When people look for the cryptocurrencies that will survive long term, it can be confusing due to the 2,000+ cryptocurrencies listed on CoinMarketCap. However, it is clear that cryptocurrencies with truly unique and useful technology, as well as strong communities will always be around and gain value long term relative to all the ICOs and copycats. Bitcoin is the king of SHA-256, Litecoin is the king of Scrypt, Ethereum is the king of blockchain-based dApps, Dogecoin is the king of the shibes on Reddit, Dash is the King of X11, Monero is the king of privacy coins, IOTA is the king of Directed Acyclic Graphs (DAGs), and Burstcoin is the king of Proof of Capacity. These kings of cryptocurrency will definitely be the winners and survivors when the fallout from the ICO apocalypse is over.
This is for educational purposes only and is not investment advice. We are not paid by BURST to write this article.
submitted by turtlecane to burstcoin [link] [comments]

What Is Cryptocurrency ASIC Mining? $20,000 ASIC Tear-Down  Who Makes ASIC Miners? Dijital Güvenliğiniz Kendi Ellerinizde Application-specific integrated circuit BITCOIN  The Best HYIP  How to COMPOUND BITCOIN What are ASIC Miners? Understand Cryptocurrency Mining

The Application Specific Integrated Circuit is a unique type of IC that is designed with a certain purpose in mind. This type of ICs are very common in most hardware nowadays since building with standard IC components would lead to big and bulky circuits. An FPGA (Field Programmable Gate Array) is also a type of IC, but it does not have the programming built into it during the production. As ... Die Weld des Bitcoin-Minings befindet sich gerade im Übergang zur Anwendungsspezifisch integrierten Schaltung (Application Specific Integrated Circuit ASIC). Ein ASIC ist ein Chip mit einer elektronischen Schaltung, der nur für eine ganz bestimmte Arbeit hergestellt wird. Anders als FPGA's können ASIC's keine anderen Arbeiten ausführen. Ein ASIC, das für das Minen von Bitcoins gebaut ... ASIC (application-specific integrated) is an integrated circuit specialized for solving a specific problem. In contrast to General-purpose integrated circuits, specialized integrated circuits are used in a particular device and perform strictly limited functions specific to that device only; consequently, the execution of functions is faster and, ultimately, cheaper. From Bitcoin Wiki. Jump to: navigation, search. A field-programmable gate array (FPGA) is an integrated circuit designed to be configured by the customer or designer after manufacturing—hence "field-programmable". The FPGA configuration is generally specified using a hardware description language (HDL), similar to that used for an application-specific integrated circuit (ASIC) (circuit ... An application-specific integrated circuit, or ASIC, is a microchip designed and manufactured for a very specific purpose. ASICs designed for Bitcoin mining were first released in 2013. For the amount of power they consume, they are vastly more energy efficient than predecessor approaches to mining - using CPU, GPU or FPGA. Pooled mining. Pooled mining is the use of a block template allocation ...

[index] [15710] [43680] [34911] [51354] [19332] [30429] [24985] [4840] [37632] [22492]

What Is Cryptocurrency ASIC Mining? $20,000 ASIC Tear-Down Who Makes ASIC Miners?

Application-Specific Integrated Circuit (ASIC) Arbitrage ASIC Atomic Swap Attestation Ledger Bitcoin Bitcoin Dominance Bitcoin Pizza Block Explorer Block Height Block Reward Blockchain Blockchain ... Today's modern and best bitcoin mining hardware Application-specific integrated circuit (ASIC) miners have taken over completely. These ASIC machines mine at unprecedented speeds while consuming ... Lets tear down this $20,000 ASIC Miner and discuss just what exactly is an Application-Specific Integrated Circuit (ASIC) crypto miner and what are the top c... An application-specific integrated circuit (ASIC) /ˈeɪsɪk/, is an integrated circuit (IC) customized for a particular use, rather than intended for general-purpose use. For example, a chip ... What are ASIC Miners? ASICs or “Application Specific Integrated Circuits” are specialized hardware designed to do a single activity. ASICs have become popular because they can mine certain ...

#